
Syntactic Processing of Diagrams by Graph Grammars

 Tomokazu Arita Kiyonobu Tomiyama Takeo Yaku

Dept. App. Math., Nihon Univ.
Setagaya 156-8550,JAPAN

{arita,tomiyama,yaku}@am.chs.nihon-u.ac.jp

 Youzou Miyadera Kimio Sugita Kensei Tsuchida
 Dept. Math. & Inf. Sci., Dept. Math., Dept. Inf. & Comp. Eng.,
 Tokyo Gakugei Univ. Tokai Univ. Toyo Univ.
 Koganei 184-8501,JAPAN Hiratsuka 259-1292,JAPAN Kawagoe 350-8585,JAPAN
 miyadera@u-gakugei.ac.jp sugita@math.sm.u-tokai.ac.jp kensei@eng.toyo.ac.jp

Abstract We deal with syntactic definitions and
processing of program diagrams based on graph
grammars with respect to the mechanical drawing. We
propose an attribute NCE graph grammar of
hierarchical diagrams such as structured program
diagrams. We also propose attribute context-free and
context-sensitive NCE graph grammars for nested and
tessellation diagrams, respectively. Attribute rules are
used for the mechanical drawing. Furthermore, we
introduce an integrated diagram processing method
based on NCE graph grammars. The results could be
applied to general diagram processing.

Keywords Software visualization, software
engineering tools and environment, graph grammars,
tabular forms.

1. Introduction
We deal with syntactic definitions and processings of
program diagrams based on graph grammars with
respect to the mechanical drawing.
Several models and properties of graph grammars
have been investigated by Franck [1], Della Vigna
[2], Rozenberg [12] and others [5]. Recently, NCE
graph grammars (see.e.g. [12]) have been considered
as reasonable models of design and analysis
especially for artificial objects.
On the other hand, graph manipulating systems such
as graph editors and graph drawing systems using
combinatorial and constraint algorithms were
developed.
In accordance with development of the graph
grammar theory, syntactic graph manipulating systems
were also developed such as DIAGEN. Among them,
several large projects such as APPLIGRAPH have

been also developed. In [12], Nagl et al introduced
IPSEN systems.
In 1978, Yaku and Futatsugi introduced the graphical
notation of program flowcharts Hichart. Several
symbols and global structure of Hichart diagrams have
been employed by other program diagram languages.
Our project for the graph processing was named
KEYAKI (see e.g.[10,14,16]). In 1987, we introduced
a non-syntactic character based flowchart-processing
systems (Yaku-Futatsugi-Adachi-Moriya [4]). In 1996,
we formalized Hichart diagram editing commands by
the attribute graph grammars based on Della Vigna's
context-free graph grammar [2,10]. Yaku and
Yamazaki also introduced several results in graph
language theory [6]. A CAI system using our graph
grammatical results was introduced in [11], and a
system for rule based program visualization was
introduced in 1998 [15].

In this paper, we consider three typical types of
diagrams in program specifications, that is, (1)
hierarchical diagrams such as structured program
diagrams, (2) nested tabular diagrams such as a header
of program specification forms, and (3) tessellation
tabular diagrams such as symbol tables. The purpose
of this paper is to characterize types of graph
grammars that generate those three types of diagrams,
and to propose processing methods of diagrams using
the graph grammars.
We propose an attribute NCE graph grammar of
hierarchical diagrams such as structured program
diagrams.
We also propose attribute context-free and
context-sensitive NCE graph grammars for nested and
tessellation diagrams, respectively.

Furthermore, we introduce an integrated diagram
processing method based on NCE graph grammars.
The results could be applied to general diagram
processing.
In Section 2, we review program flowcharts Hichart
and program specification forms. In Section 3, we
introduce graph grammars of program diagrams
Hichart. In Section 4, we introduce attribute graph
grammars for nested and tessellation diagrams. In
Section 5, we introduce a uniform system which
supports graph grammar based diagram processing
methods. Section 6 provides concluding remarks.

2. Program Flowcharts and Program
 Specification Forms
In this Section, we review diagrams appeared in the
software visualization. We consider two types of
diagrams. One is hierarchical diagrams for program
flowchart and The other is tabular diagrams for
program specification forms.

2.1 Hierarchical Diagrams for Program
 Flowchart
We introduce a program flowchart description
language Hichart (Hierarchical flow CHART
description language) [4]. Hichart is of a tree
structured program flowchart type. Figure 1 shows an
example of Hichart flowcharts for the "Hanoi Tower"
problem.

Figure 1. A Hichart program flowchart (Tower of
Hanoi).

Hichart flowcharts have the following characteristics:
l Each process is described within a corresponding

cell.
l Cells are arranged in a hierarchical manner.
l Cells are connected to each other by lines.
l Some lines run vertically and some horizontally,

and these do not cross.
l Diagrams are displayed on a plane.

Formal definition of the hierarchical diagrams will be
discussed in Section 3.

2.2 Tabular Diagrams for Program Specific-
 ation Forms
We introduce here a program specification language
called Hiform [14] based on ISO6592 [3].

The International Organization for Standardization
issued a guideline in ISO6592 and described all items
in program documentation in Annexes A, B and C.
We considered the ISO6592 items and introduced
Hiform96, which includes all items defined in these
Annexes. Hiform[14] is defined by 17 types of forms.

Hiform was originally developed for the purpose of
facilitating the software development at schools.
Hiform Specification is a collection of tabular
diagrams. Using tabular diagrams, one can understand
at a glance what information should be obtained, what
information is lacking, how a project is proceeding,
and how to develop and maintain the software.
Besides these characteristics, the tabular forms can
include various description styles such as letters and
diagrams.

The following Figure 2 shows a Hiform program
specification form.

The order among tabular forms is defined by a
context-free string grammar [11]. The order and
graphical structure of cells inside tabular diagrams
will be formally discussed in Section 4.

Figure 2. Hiform program specification form
(Program Specification-1).

3. An Attribute Graph Grammar for
Hierarchical Diagrams
In this Section, we introduce an attribute graph
grammar HiChart Graph Grammar (HCGG) for the
hierarchical diagrams in Hichart. HCGG provides
graph grammatical definitions and attribute rewriting
rules. Graph grammatical part is defined by a
context-free NCE graph grammars [14]. On the other
hand, attribute rules compute attributes for diagram
layout such as coordinates and size of each cell. The
major characterization of HCGG is as follows.

Grammar 3.1 HCGG is an attribute context-free
NCE graph grammar for the hierarchical diagrams in
Hichart.

Typical productions of HCGG are shown in Figures
3A and 3B.

Figure 3A. Production in HCGG.

Figure 3B. Production in HCGG.

Property 3.2 Attributes in HCGG are evaluated in
linear time.

A derivation process of a Hichart diagram by HCGG
is shown in the following Figure 4.

Figure 4. Derivation Processes of Hichart Diagram
based on HCGG.

4. Attribute Graph Grammars for Tabular
Diagrams
In this Section, we deal with the syntactic
formalization of tabular diagram Hiform. The formal
definition of Hiform documentation consists of two
stages of grammars. One provides the order among
tabular forms, and the other provides arrangement of
items inside each form. The former is a context-free
string grammar [11], and the latter is an attribute
graph grammar.

Hiform has graph grammars for graph syntax and
attribute rules for drawing conditions. In the graph
grammar of Hiform, a program form will be
represented by completed graphs with locations.

We illustrate examples which are a nested graph and a
marked graph for a program documentation in Figure
5.

Figure 5. A tabular diagram, a corresponding nested
diagram and a corresponding marked graph.

In Figure 5, a label of an edge in the marked graph
denotes the relation between two nodes that are start
node and end node of the edge. Label "in" denotes
within, label "ov" denotes over and label "lf" denotes
left of.

Grammar 4.1 Hiform Nested Graph Grammar
(HNGG) is an attribute NCE graph grammar for the
nested diagrams in Hiform header part.

We show typical productions of HNGG in Figure 6.
Each production has attribute rules for drawing
conditions.

The HNGG includes 280 productions and 1204
attribute rules for the definition of nested diagram part
such as the program form headers.

HNGG syntax has the precedence property.

Property 4.2 Grammar HNGG is a precedence graph
grammar.

Thus, the parsing algorithm of Hiform is partly given
by the Franck's linear time parsing algorithm [1].

Figure 6. Productions and semantic rules of HNGG.

Next, we consider tessellation tabular form such as
symbol tables in specification form in Hiform.

Following Figure 7 shows an example of tessellation
diagrams.

Figure 7. Tessellation diagram and its corresponding
marked graph.

Now we introduce a context-sensitive attribute NCE
graph grammar for tessellation diagrams.

Grammar 4.3 Hiform Tessellation Graph Grammar
(HTGG) is a context-sensitive attribute NCE graph
grammar for the tessellation diagrams in Hiform.

The grammar HTGG includes 56 syntax rules and 256
attribute rules. Following Figure 8 shows typical
productions and attribute rules in HTGG.

Figure 8. Part of the productions and semantic rules in
HTGG.

Tessellation diagrams generated by HTGG is
classified into row-oriented tessellation diagrams and
column-oriented diagrams.

5. Diagram Processing System
This section describes a diagram processing system
which is called KEYAKI-CASE2000. The
KEYAKI-CASE2000 consists of the following
components: (1) Hichart program diagram editing
component (HichartED), (2) Hichart program
diagram filtering component (HiTS), (3) Program
variable analyzing component (LIVE), and (4) Hiform
diagram component (HiformED).

Figure 9. System Structure of KEYAKI-CASE2000.

These components are based on the theoretical
research described in Sections 3 and 4. Figure 9 shows
the system structure of KEYAKI-CASE2000.

Figure 10. Execution Screen of HiTS.

We describe each component in detail as follows.

5.1 HichartED
The Hichart program diagram editing component is
called HichartED. HichartED is a syntax-directed
diagram editor using an attribute graph grammar [12].
The Hichart editor-commands are defined by
productions of the attribute graph grammar which
formally defines the Hichart program diagram. This
guarantees that any grammatically correct diagram
can be generated and that there will be no syntax
errors in generation of the program and editing
processes with the editor.

5.2 HiTS
The Hichart program diagram filtering component is
called HiTS (Hichart Translation service) [7,9]. The
theoretical research concerning the HiTS was
described in Section 3. HiTS is a program flowchart
processing system that automatically generates
tree-structured program flowcharts (Hichart)[4]
incorporating the results of the theoretical research
which is a tidy drawing of trees. Specifically, the
system automatically generates a program flowchart
and assists the user in visualizing data structure and
control flow. Moreover, the flowcharts used in HiTS
can be formed from program specifications as well as
from program source code (C, Pascal). The
descriptions in the window used for explanatory text
can be used as nodes to generate a flowchart that

abstracts the program.

Figure 10 shows a program diagram (upper right
window) and an abstracted program diagram (lower
right window) for a C program that determines the
shortest path using a Dijkstra algorithm. And, Figure
11 is also a program diagram (right most windows) for
a Pascal program which is generated by HiTS system.
The Pascal version of this tool was implemented in
about 26,500 steps, While the C version consists of
approximately 30,000 steps.

Figure 11. Execution Screen of LIVE.

5.3 LIVE
We also provide a program variable analyzing
component called LIVE base on attribute grammars.
LIVE was developed to support the program
modularization[9]. LIVE is developed by the
theoretical research which is the data-flow analysis
theory. HiTS can also be used to judge whether or
not appropriate program modules have been formed
by simultaneously referring to the information in the
LIVE. Based on the results of this evaluation, the user
can modify the data structure and modules.

The result of applying the LIVE operation is shown in
Figure 11. The window on the left side of the screen
displays the program source code implementing
matrix multiplication, while that in the middle shows
the active variable derived by LIVE, and the Hichart
flowchart is on the right. It is apparent from the LIVE
results that the code can be broken into modules at the
30th line and at the 40th line.

This tool is written in Pascal and consists of
approximately 15,000 steps.

5.4 HiformED
We are also developing a Hiform diagram processing
component called HiformED. An execution screen
model is shown in the following Figure 12.

Figure 12. Execution Screen of HiformED.

6. Conclusions
We proposed an attribute context-sensitive NCE
grammars as a universal model of visual processing of
diagrams. We proposed an attribute NCE graph
grammar with 67 productions and 723 attribute rules
for Hichart program diagrams. We also proposed
attribute NCE context-free graph grammar with 280
productions and 1204 attribute rules for ISO 6592
documentation with 137 items. Furthermore, we
proposed an attribute context-sensitive NCE graph
grammar for tessellation diagrams, which provide first
concrete edge-sensitive NCE graph grammars.
Processing methods were also considered.

References
[1] Reinhold Franck, A class of linearly parsable

graph grammars, Acta Infomatica 10 (1978),
175-201.

[2] Pierluigi Della Vigna and Carlo Ghezzi, Context
free graph grammars, Inform. Contr. 37 (1978),
207-233.

[3] ISO6592-1985, Guidelines for the documentation
of computer-based application systems, (1985)

[4] T. Yaku, K. Futatsugi, A. Adachi and E. Moriya,
HICHART-A hierarchical flowchart description
language-, Proc. IEEE COMPSAC 11 (1987),
157-163.

[5] T. Nishino, Attribute graph grammars with
applications to hichart program chart editors.,

Advances in Software Science and Technology 1
(1989), 426-433.

[6] K. Yamazaki and T. Yaku, A pumping lemma
and structure of derivations in the boundary NLC
graph languages, Imform. Sci.75 (1993), 81-97.

[7] Y. Miyadera, K. Tsuchida, and T. Yaku, A tidy
drawing problem on the minimum area for
tree-structured diagrams and Its application to
program diagrams, IFIP Transac. A-51 (1994),
282-287.

[8] K. Tsuchida, The complexity of drawing
tree-structured diagrams, IEICE Trans. Inf. &
Syst. E78-D (1995), pp.901-908.

[9] Y. Miyadera, A. Tsuchiya, T. Yaku, and H.
Konya, Network-based programming language
education environment based on a modular
program diagram, Proc. IEEE International
Conference on Multi Media in Education, (1996),
425-434.

[10] Y. Adachi, K. Anzai, K. Tsuchida and T. Yaku,
Hierarchical program diagram editor based on
attribute graph grammar, Proc. IEEE COMPSAC
21 (1996), 205-213

[11] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, Advanced software mechanisms for
computer-aided instruction in information
literacy, Proc. APEC Conf. Inform. Literacy.
(APEC-CIL'97), (1997)

[12] Grsegorz Rozenberg (Ed.), Handbook of Graph
Grammar and Computing by Graph
Transformation, World Scientific Publishing
(1997).

[13] Y. Miyadera, K. Anzai, H. Unno and T. Yaku,
Depth-first layout algorithm for trees,
Information Processing Letters 66 (1998),
187-194.

[14] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, A visual programming environment
based on graph grammars and tidy graph drawing,
Proc. Internat. Conf. Software Engin. (ICSE '98)
20-II (1998), 74-79.

[15] A. Adachi, T. Tsuchida and T. Yaku, Program
visualization using attribute graph grammars,
CD-ROM Proc. IFIP World Computer Congress
98 (1998).

[16] Kimio Sugita and et al, Integrated visualization
environment for computer science education,
Proc. ICEUT2000 (IFIP WCC2000), to appear.

