NCE 4S5

Syntactic Processing of diagra

HE A il E! fZm sl
Tomokazu Arita Kiyonobu Tomiyama Kimio Sugita
SESSA s

Nihon University Tokai University Gakugeil University

1. Introduction

We deal with syntactic definitions and processing of
program diagrams based on graph grammars with re-
spect to the mechanical drawing. We consider di-
agrams which are program flowchart diagram and
tabular diagrams. Furthermore, we introduce an in-
tegrated diagram processing method based on NCE
graph grammars. The results could be applied to
general diagram processing.

2. Diagrams Used in Program Spec-

ifications

We review diagrams appeared in the software visual-
ization. We consider two types of diagrams. One is
hierarchical diagrams for program flowchart and The
other is tabular diagrams for program specification
forms.

2.1 Hierarchical Diagrams for Program
Flowchart

We introduce a program flowchart description lan-
guage Hichart (Hierarchical flow CHART description
language). Hichart is of a tree structured program
flowchart type.

2.2 Tabular Diagrams for Program Specifi-
cation Forms

We introduce here a program specification language
called Hiform based on 1SO6592. The International
Organization for Standardization issued a guideline
in ISO6592 and described all items in program doc-
umentation in Annexes A, B and C. We considered
the 1SO6592 items and introduced Hiform96, which
includes all items defined in these Annexes. Hiform
is defined by 17 types of forms.

Hiform was originally developed for the purpose of
facilitating the software development at schools. Hi-
form Specification is a collection of tabular diagrams.

The order among tabular forms is defined by a
context-free string grammar. The order and graph-
ical structure of cells inside tabular diagrams is de-
fined by graph grammars.

3. Attribute Graph Grammars for
Diagrams

The layout information for these diagrams in pro-
gram specifications is defined by attribute graph
grammars. By defining these layout information us-
ing graph grammars, we obtain the following advan-
tages. (1) It is possible to draw diagrams automati-
cally. (2) It is possible to edit diagrams by syntactic
methods. (3) It is possible to define layout conditons
for diagrams declaratively.

IEIZEKBFATY

T LDEX RN
ms by NCE Graph Grammrs

E pE +m ' wa R
Youzou Miyadera Kensei Tsuchida Takeo Yaku
T At

Toyo University

program name :
subtitle :
library code : version :
author : original release :
approver : current release :
Fig.1 A specification form
head]y Xx(1)=x(0)
ov 0
1 [root] yg;=y§?3
ov X(2)=X
(79571, | v@)=y(1)+height(1)
infinTov width(0) =)
é‘ head _ max(width(1),width(2))
root |, height(0)= .
height(1)+height(2)

Fig.2 A production with attribute rules

4. Diagram Processing System

We here describe a diagram processing system which
is called KEYAKI-CASE2000. KEYAKI-CASE2000
consists of the following components: (1) Hichart
program diagram editing component (HichartED),
(2) Hichart program diagram filtering component
(HiTS), (3) Program variable analyzing component
(LIVE), and (4) Hiform diagram component (Hi-
formED).

| LVE | | HiTS | [HichartED| HiformED|

| Graph Parse Engine |

Semantic g?aE h Precedenc
Rules p Table
Grammar

Fig.3 KEYAKI - CASE2000

5. Conclusion

We proposed syntactic processing of diagrams by
NCE graph grammars. Then we developed diagram
editor system. The system allows users to edit in
syntax-directed mannar and draw diagrams mechan-
ical based ongraph grammatical method.

References

(1]

