
An Octet Degree Graph Representation for the
Rectangular Dissections

TOMOE MOTOHASHI

Kanto Gakuin University

TOMOKAZU ARITA

Obirin University

KENSEI TSUCHIDA

Toyo University

and

TAKEO YAKU

Nihon University

A considerable number of data structures have been introduced for models of rectangular dissec-
tions. However, editing operations such as column insertion have not been effectively formalized
for known data structures (see Appendix).

In this paper, we propose an attribute graph as another type of data structure for the rectangu-
lar dissections with heterogeneous cells over the global meshes that performs editing and drawing.
We call the graphs rectangular dissection graphs. We also give algorithms for basic operations in
table editing. It is shown that our column insertion algorithm effectively executes an “expected
” column insertion operation, and runs in O(

√
n) time, while known algorithm runs in O(n) time

for the n cell square rectangular dissections.
Several other algorithms are proposed, including one where the cell unifying algorithm runs in

O(1) time, while a known algorithm runs in O(n) time for the n cell rectangular dissections.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and Networks; I.7.2 [Docu-
ment and Text Processing]: Document Preparation; J.6 [Computer Applications]: Computer-
aided engineering

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Rectangular dissections, rectangular dissection graphs, table
interface

1. INTRODUCTION

Rectangular dissections with heterogeneous cells over global meshes are commonly
used in information processing such as tables in documentation and floor plans
in operation researches. The importance of rectangular dissection processing in-

Authoe’s address: T. Motohashi, 1-50-1, Mutsuura-Higashi, Kanazawa-ku, Yokohama, Kanagawa,
236-8501, Japan, e-mail tomoe@kanto-gakuin.ac.jp
T. Arita, 3758, Tokiwa-machi, Machida, Tokyo, 194-0294, Japan, e-mail arita@obirin.ac.jp
K. Tsuchida, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan, e-mail kensei@eng.toyo.ac.jp
T. Yaku, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan, e-mail yaku@cs.chs.nihon-
u.ac.jp
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–24.

2 · Tomoe Motohashi et al.

creases in accordance with development of both document processing and operation
researches.

Many authors have introduced various data structures in order to effectively
formalize operations and to efficiently execute operations on rectangular dissec-
tions. Quad trees were introduced for data search [de Berg, van Kreveld, Overmats
and Schwarzkoph 1997]. Rectangular dual graphs were introduced for floor lay-
out [Brandenburg 1994],[Kozminski and Kinnen 1985]. Another model called wall
representation has been introduced for a wall move (e.g. [Kundu 1998]).

However, those data structures could not effectively formalize several operations
on rectangular dissections. For example, column insertion operation is not often
effectively executed in word processors (see Appendix). That is, users often obtain
unexpected results. And operations on those data structures may not be executed
efficiently. That is, several operations seem to execute unnecessary operations and
run in too large complexity.

We propose in this paper octed degree graphs called rectangular dissection graphs
as a data structure of the rectangular dissections over global meshes. Several oper-
ations on rectangular dissections are effectively formalized such as column insertion
on the data structure. Several operations are formalized in lower complexity on the
data structure. Wall move and column insertion are both executed in O(

√
n) time,

while the operations are executed in O(n) time in known data structures [Kozmin-
ski and Kinnen 1985] for the n cell square rectangular dissections. Cell unifying is
executed in O(1) time, while the operation is executed in O(log(n)) time in quad
tree model in [de Berg, van Kreveld, Overmats and Schwarzkoph 1997].

Accordingly, we claim that the rectangular dissection graphs may be a important
model for rectangular dissection transformations.

We introduce the rectangular graphs for rectangular dissections. Our rectangular
dissction graphs have two particular features. The first feature is that only the
nodes with the same wall coordinates are connected by edges. The second feature
is that the degree of nodes is bounded by eight.

By the first feature, transform operations such as column insertion are effectively
formalized. By the second feature, efficient algorithms are constructed such as the
O(1) cell unifying algorithm and the O(

√
n) column insertion algorithm, as the

known model drive O(n) algorithms.
This model and algorithms are capable to be widely used for existing information

processing systems. This model and algorithms increase effectiveness and efficiency
of table processing systems.

Section 2 proposes a representation of tables by an attribute multi-edge graph.
Several properties of the graphs are shown.

In Section 3, several algorithms that execute table editing based on the repre-
sentation are shown. We provide algorithms for unifying cells, moving east wall,
changing the column width and the insertion column.

Section 4 provides conclusions.

2. OCTET DEGREE GRAPHS FOR RECTANGULAR DISSECTIONS

We provide this section for several definitions concerning a selected table.
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 3

{(1,1)} {(1,3)}{(1,2)}

{(2,1)} {(2,2)} {(2,3)}

Fig. 1. A Partition P1

{(1,1),

(2,1)}

{(1,3)}{(1,2)}

{(2,2),(2,3)}

Fig. 2. A Partition P2

Definition 2.1 An (s, t)− table is a set {(i, j)|1 ≤ i ≤ s, 1 ≤ j ≤ t} of integer
pairs. A table is an (s, t)− table for some s and t. A partial table is a subset S of
an (s, t)− table, where S is in the form of {(i, j)|u ≤ i ≤ v, x ≤ j ≤ y} for integers
1 ≤ u, v ≤ s, 1 ≤ x, y ≤ t. A partition P over a table T is a pairwise disjoint
collection S1, S2, . . . , SN of partial tables, where S1 ∪ S2 ∪ . . . ∪ SN = T , and each
Si is called a cell. We call s the row number and t the column number of T .

Example 2.1 Figure 1 illustrates a partition

P1 = {{(1, 1)}, {(1, 2)}, {(1, 3)}, {(2, 1)}, {(2, 2)}, {(2, 3)}}
over the (2, 3)−table T .

Example 2.2 Figure 2 illustrates a partition

P2 = {{(1, 1), (2, 1)}, {(1, 2)}, {(1, 3)}, {(2, 2), (2, 3)}}
over the (2, 3)−table T .

Definition 2.2 The row grid of an (s, t)− table T is a map grow : {0, 1, . . . , s} →
R such that grow(i) ≤ grow(i + 1) for 0 ≤ i ≤ s − 1. The column grid is a map
gcolumn : {0, 1, . . . , t} → R such that gcolumn(j) ≤ gcolumn(j + 1) for 0 ≤ j ≤ t− 1.
A grid is a pair g = (grow, gcolumn).

A tabular diagram is a triple D = (T, P, g) of a table T , a partition P over T ,
and a grid g of T .

Terminology Let c be a cell c = {(i, j)|u ≤ i ≤ v, x ≤ j ≤ y}.
The north wall nw(c) of c denotes grow(u−1). The south wall sw(c) of c denotes

grow(v). The east wall ew(c) of c denotes gcolumn(y). The west wall ww(c) of c
denotes gcolumn(x− 1).

The location of c is a pair (nw(c), ww(c)). The height(c) denotes sw(c)− nw(c),
and width(c) denotes ew(c) − ww(c). The location of an (s, t)− table is a pair
(grow(0), gcolumn(0)).

We show figures of tabular diagrams.
Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · Tomoe Motohashi et al.

0 2 4 6

0

1

2

Fig. 3. A Tabular Diagram D1 = (T1, P1, g1)

0 2 4 6

0

1

2

Fig. 4. A Tabular Diagram D2 = (T2, P2, g2)

Example 2.3 Figure 3 illustrates a tabular diagram D1 = (T1, P1, g1), where
g1row(0) = 0, g1row(1) = 1, g1row(2) = 2, and g1column(0) = 0, g1column(1) = 2,

g1column(2) = 4, g1column(3) = 6. The numbers represent the grid coordinates.

Example 2.4 Figure 4 illustrates a tabular diagram D2 = (T2, P2, g2) corre-
sponding to the partition P2.

In the latter part of this paper, we consider a certain type of tabular diagrams
in order to deal with effective algorithms for table editing.

Condition 2.1 Let D = (T, P, g) be a tabular diagram. D satisfies the following
conditions.

T is a (s, t)− table, where s, t ≥ 3.
P has 2s + 2t− 4 perimeter cells each of which is in the form of {(i, j)}

satisfying one of the following conditions :
(1) i = 1, 1 ≤ j ≤ t, (2) i = s, 1 ≤ j ≤ t,
(3) 1 ≤ i ≤ s, j = 1 or (4) 1 ≤ i ≤ s, j = t.

For a perimeter cell c = {(i, j)},
width(c) = 0 if i = 1 or s, and height(c) = 0 if j = 1 or t.

The following examples show tabular diagrams satisfying Condition 2.1. With
respect to table drawing, they correspond to tabular diagrams without perimeter
cells as in previous examples.

Example 2.5 Figure 5 illustrates a tabular diagram D1p = (T1p, P1p, g1p) with
perimeter cells, where g1p row(0) = 0, g1p row(1) = 0, g1p row(2) = 1, g1p row(3) =
2, g1p row(4) = 2 and g1p column(0) = 0, g1p column(1) = 0, g1p column(2) = 2,
g1p column(3) = 4, g1p column(4) = 6, g1p column(5) = 6.

The numbers represent the grid coordinates. The tabular diagram D1p corre-
sponds to D1 in Example 2.3.
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 5

0 0 2 4 6 6

0

0

1

2

2

Fig. 5. A Tabular Diagram D1p with Perimeter Cells

00 2 4 6 6

0

0

1

2

2

Fig. 6. A Tabular Diagram D2p with Perimeter Cells

Example 2.6 Figure 6 illustrates tabular diagram D2p with perimeter cells,
which corresponds to D2 in Example 2.4.

Editing and drawing are often effectively executed, when tabular diagrams are
represented by graphs. Consequently, we term now to graph representation.

Now, we introduce an attribute graph. Then, we show how to represent a tabular
diagram with an attribute graph.

Definition 2.3 An attribute graph is a 6−tuple G = (V,E,L, λ, A, α), where
(V, E) is a multi-edge undirected graph,
L is the set of labels for edges,
λ : E → L is the label function,
A is the set of attributes, and
α : V ′ → A is the attribute map, where V ′ is a subset of V .

A tabular diagram D = (T, P, g) is represented as an attribute graph GD =
(VD, ED, L, λD, A, αD), where VD is identified by a partition P (we denote a node
corresponding to a cell c in P by vc, we call vc a perimeter node (resp. inner
node) if c is a perimeter cell (resp. inner cell)), ED is defined by Rules 1-4, L =
{enw, esw, eew, eww}, λD : ED → L is defined by Rules 1-4, A = R4, and αD :
V1,∗ ∪ V∗,1 → R4 are defined by αD(vc) = (nw(c), sw(c), ew(c), ww(c)) for vc ∈
V1,∗ ∪ V∗,1, where V1,∗ is the set of perimeter nodes corresponding to the perimeter
cells in the 1st row, and V∗,1 is the set of perimeter nodes corresponding to the
perimeter cells in the 1st column.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · Tomoe Motohashi et al.

c
d

vc

vd

Fig. 7. Tabular Diagram and Its Corresponding Rectangular Dissection Graph

Fig. 8. Tabular Diagram and Its Corresponding Rectangular Dissection Graph

For simplicity, we also use nw(vc), sw(vc), ew(vc), and ww(vc) instead of nw(c),
sw(c), ew(c), and ww(c), respectively.
Rule 1 If nw(c) = nw(d) and there is no cell between c and d having an equal
north wall, then [vc, vd] is in ED and λD[vc, vd] = enw. In this case, [vc, vd] is called
a north wall edge.
Rule 2 If sw(c) = sw(d) and there is no cell between c and d having an equal south
wall, then [vc, vd] is in ED and λD[vc, vd] = esw. In this case, [vc, vd] is called a
south wall edge.
Rule 3 If ew(c) = ew(d) and there is no cell between c and d having an equal east
wall, then [vc, vd] is in ED and λD[vc, vd] = eew. In this case, [vc, vd] is called an
east wall edge.
Rule 4 If ww(c) = ww(d) and there is no cell between c and d having an equal
west wall, then [vc, vd] is in ED and λD[vc, vd] = eww. In this case, [vc, vd] is called
a west wall edge.

An attribute graph GD is called a rectangular dissection graph (a tessellation
graph [Kirishima, Motohashi, Tsuchida and Yaku 2002]). Note that the degree of
each node v in GD is at most 8.

Example 2.7 Figure 7 shows a tabular diagram and its corresponding rectan-
gular dissection graph. With the arrangement of the vertices, we represent south
wall edges and west wall edges by dotted lines.

Example 2.8 Figure 8 shows a tabular diagram and its corresponding rectan-
gular dissection graph.

Proposition 2.1 Let GD be a rectangular dissection graph for a tabular diagram
D of the (s, t)−table. GD is not generally a planar graph.
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 7

x
y vx

vy

a

b

c d
vc vd

vb

va

Fig. 9. Tabular Diagram and Subgraphs of Its Corresponding Rectangular Dissection Graph

Proof. Figure 9 represents a part of a tabular diagram. These two inner cells x and
y have an equal north wall, but do not have equal south walls. Its corresponding
rectangular dissection graph G contains a subdivision of a bipartite graph K3,3. By
the Kratowski’s theorem, the rectangular dissection graph is not planar.

Q.E.D.

Note that we consider tabular diagrams with perimeter cells. Then,

Proposition 2.2 Let GD be a rectangular dissection graph for a tabular diagram
D of the (s, t)−table. Let k be the number of inner cells in GD. For the number
#ED of edges in GD, we have

2#ED = 6(2s− 4) + 6(2t− 4) + 8k + 16.

Proof. The degree of inner nodes in GD is equal to 8. The degree of the perimeter
nodes except the one in the corner is equal to 6. The degree of the nodes in the
corner is equal to 4. Since 2#ED is equal to the sum of the degree of the nodes in
VD, the proposition is verified.

Q.E.D.

3. ALGORITHMS

We assume that the edges in rectangular dissection graphs are ordered, that is,
a leftward equal north edge and a rightward equal north edge are identified, for
example. This section provides algorithms for rectangular dissection graphs. The
following algorithm unifies two adjacent inner cells in a tabular diagram.

ALGORITHM UnifyCells(GD, vx, vy, GE)

INPUT
GD = (VD, ED, L, λD, A, αD) : a rectangular dissection graph for a tabular diagram
D,
vx : a node in GD corresponding to an inner cell x,

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · Tomoe Motohashi et al.

x

y

vx

vy

vx

vyvb

va va

vb

GDD

a

b

c
d=fe

g h

Fig. 10. A Change of Vertical Edges of vy after PHASE 2 of Algorithm UnifyCells

vy : a node in GD corresponding to an inner cell y which is adjacent to the south
side of x such that ww(x) = ww(y), ew(x) = ew(y), and sw(x) = nw(y).

OUTPUT
GE = (VE , EE , L, λE , A, αE) : a rectangular dissection graph for a tabular diagram
E, where E is obtained from D by unifying cells x and y into x.

METHOD
begin

/∗ PHASE 1 ∗/
Initially let GE ← GD ;
let va, vb be lower nodes linked to vy by a vertical edge ;
let vc be a westside node linked to vy by a south wall edge ;
let vd be an eastside node linked to vy by a south wall edge ;
let ve be a westside node linked to vy by a north wall edge ;
let vf be an eastside node linked to vy by a north wall edge ;
let vg be a westside node linked to vx by a south wall edge ;
let vh be an eastside node linked to vx by a south wall edge ;
/∗ PHASE 2 ∗/
/∗ change of vertical edges concerning to vy ∗/
delete two vertical edges [vy, va] and [vy, vb] from EE ;
add edges [vx, va] and [vx, vb] to EE ;
put λE [vx, va] ← λD[vy, va], and λE [vx, vb] ← λD[vy, vb] ;
delete two vertical edges between vx and vy from EE ; (See Figure 10)
/∗ PHASE 3 ∗/
/∗ change of south wall edges concerning to vy ∗/
delete south wall edges [vc, vy] and [vd, vy] from EE ;
add [vc, vx] and [vx, vd] to EE ;
put λE [vc, vx] ← esw, λ[vx, vd] ← esw ;
/∗ change of north wall edges concerning to vy ∗/
delete north wall edges [ve, vy] and [vy, vf] from EE ;
add an edge [ve, vf] to EE ;
put λE [ve, vf] ← enw ;
/∗ change of south wall edges concerning to vx ∗/
delete south wall edges [vg, vx] and [vx, vh] from EE ;

Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 9

x vx

GEE

Fig. 11. Output Graph GE in Algorithm UnifyCells

add an edge [vg, vh] to EE ;
put λE [vg, vh] ← esw ;
/∗ delete of the node vy ∗/
delete the node vy from GE (See Figure 11)

end.

Theorem 3.1 Let D be a tabular diagram of the (s, t)-table, and x be an inner
cell in D. Suppose that there is an inner cell y adjacent to the south side of x
such that ew(x) = ew(y), ww(x) = ww(y) and sw(x) = nw(y). Let E be a tabular
diagram obtained from D by the unifying cells x and y into x. Let GD and GE be
the rectangular dissection graphs for D and E. Then GE is obtained from GD in
constant time.

Proof. The theorem is verified by Algorithm UnifyCells. GE is obtained from
GD by the unifying nodes vx and vy into vx, involving with changing edges, and
the label of the edges. Since we look at rows containing the two nodes vx and vy,
and the degree of nodes in rectangular dissection graphs is at most 8, then GE is
obtained from GD in constant time.

Q.E.D.

The following algorithm executes a wall movement of a tabular diagram.

ALGORITHM MoveEastWall(GD, vx, δ, GE)

INPUT
GD = (VD, ED, L, λD, A, αD) : a rectangular dissection graph for a tabular diagram
D,
vx : a node in GD corresponding to a cell x, where x is not in the 1-st column, the
last column, and the second last column.
δ ≥ 0 : a movement value.

Suppose ∆ > δ, where ∆ > 0 is the width of a perimeter cell in the column
adjacently located at the east-side of c.

OUTPUT
GE = (VE , EE , L, λE , A, αE) : a rectangular dissection graph for a tabular diagram

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · Tomoe Motohashi et al.

E obtained from D by the east wall movement using δ of cells that have the equal
east wall for x.

METHOD
begin

Initially, let GE ← GD ;
let va be the northmost node linked to vx by east wall edges ;
let vb be a eastside node linked to va by a north wall edge ;
/∗ change attribute for va ∗/
put ew(va) ← ew(va) + δ ;
/∗ change attribute for vb ∗/
put ww(vb) ← ww(vb) + δ

end.

Theorem 3.2 Let D be a tabular diagram of the (s, t)-table, and x be a cell in
D, where x is not in the 1-st column, the last column, and the second to last column
in D. Let δ ≥ 0.

Suppose ∆ > δ, where ∆ > 0 is the width of a perimeter cell in the column
adjacently located at the east-side of c.

Let E be a tabular diagram obtained from D by the east wall movement using
δ of cells that have the equal east wall for x. Let GD and GE be the rectangular
dissection graphs for D and E, respectively. Then GE is obtained from GD in O(s)
time by the algorithm MoveEastWall.

Proof. The theorem is verified using Algorithm MoveEastWall.

Q.E.D.

The following algorithm executes a changing width of a column of a tabular
diagram.

ALGORITHM ChangeColumnWidth (GD, vx, δ, GE)

INPUT
GD = (VD, ED, L, λD, A, αD) : a rectangular dissection graph for a tabular diagram
D,
vx : a node in GD corresponding to a cell x, where x is not in the first column and
the last column,
δ : a movement value.

Suppose ∆+ δ > 0, where ∆ is the width of a perimeter cell in the column which
has equal east wall for x.

OUTPUT
GE = (VE , EE , L, λE , A, αE) : a rectangular dissection graph for a tabular diagram
E obtained from D by the changing width using δ of cells that have an equal east
wall for x.
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 11

vx

va

vx

va vb

a

x

Fig. 12. Traversal of Nodes Upward through East Wall Edges from vx

METHOD
begin

Initially, let GE ← GD ;
let va be the northmost node linked to vx by east wall edges (see Figure 12) ;
/∗ change attribute ∗/
put ew(va) ← ew(va) + δ ;
let vb be an east-side node linked to va by a north wall edge ;
while vb is not a node in the northeast corner do

/∗ west wall ∗/
put ww(vb) ← ww(vb) + δ ;
/∗ east wall ∗/
put ew(vb) ← ew(vb) + δ ;
change vb to the eastside node linked to vb by a north wall edge

end{while} ;
/∗ for a node in the northeast corner ∗/
put ww(vb) ← ww(vb) + δ ;
put ew(vb) ← ew(vb) + δ

end.

Theorem 3.3 Let D be a tabular diagram of the (s, t)-table, and x be a cell in
D, where x is not in the first column and the last column. Let δ be a movement
value. Suppose ∆ + δ > 0, where ∆ > 0 is the width of a perimeter cell in the
column which has equal east wall to x. Let E be a tabular diagram obtained from
D by the changing width using δ of cells that have an equal east wall for x. Let GD

and GE be the rectangular dissection graphs for D and E, respectively. Then GE

is obtained from GD in O(s + t) time by the algorithm ChangeColumnWidth.

Proof. Algorithm ChangeColumnWidth runs in O(s + t) time since there are
at most t nodes at the east side of x. GE is obtained from GD by changing the
attribute of the nodes. Since the degree of nodes in rectangular dissection graphs
is at most 8, then GE is obtained from GD in O(s + t) time.

Q.E.D.

Corollary 3.1 Let D be a tabular diagram of the (
√

n,
√

n)-table, and x be a cell
in D, where x is not in the first column and the last column. Let δ be a movement
value. Suppose ∆ + δ > 0, where ∆ > 0 is the width of a perimeter cell in the

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · Tomoe Motohashi et al.

a

x

vx

va

Fig. 13. Traversal of Nodes Upward through West Wall Edges from vx

column which has equal east wall to x. Let E be a tabular diagram obtained from
D by the changing width using δ of cells that have an equal east wall for x. Let GD

and GE be the rectangular dissection graphs for D and E, respectively. Then GE is
obtained from GD in O(

√
n) time by the algorithm ChangeColumnWidth, where

n is the maximal number of cells in a
√

n×√n square rectangular dissection D.

The following algorithm executes insertion of a column at the west side of a
focused cell into the tabular diagram.

ALGORITHM InsertColumn(GD, vx, GE)

INPUT
GD : a rectangular dissection graph for a tabular diagram D = (T, P, g),
vx : a node in GD corresponding to a cell x, where x is not in the first column.

OUTPUT
GE : a rectangular dissection graph for E, where E is a tabular diagram obtained
from D by the insertion of a column with width δ at the west side of x, where δ is
the width of a perimeter cell in the column including x.

METHOD
begin

Initially, put GE ← GD ;
let va be the northmost node linked to vx by east wall edges (see Figure 13) ;
let δ be the width of the cell corresponding to va ;
put v0 ← va ;
add a node u0 ;
put i ← 0 ;
/∗ insert a column ∗/
while a node vi is not the lowermost node do

let wi be an adjacently westside node linked to vi by a north wall edge ;
delete a north wall edge [wi, vi] ;
add [wi, ui] to EE ;
put λE [wi, ui] ← enw ;
deform GE similarly for a south wall edge ;
add a north wall edge and south wall edge between ui and vi ;
let vi+1 be a lower node linked to vi by a west wall edge ;

Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 13

a

x
vx

v0u0

v1

u1

Fig. 14. Insertion of the Column at West-Side of x

add a node ui+1 ;
add a west wall edge and east wall edge between ui and ui+1 ;
i ← i + 1

end ; (see Figure 14)
/∗ for the lowermost node ∗/
let wi be an adjacently westside node linked to vi by a north wall edge ;
delete a north wall edge [wi, vi] ;
add [wi, ui] to EE ;
put λE [wi, ui] ← enw ;
deform GE similarly for a south wall edge ;
add a north wall edge and south wall edge between ui and vi ;
/∗ the existing column shifts to the east ∗/
let u0 be the uppermost node in ui’s ;
put GE0 ← GE ;
ChangeColumnWidth(GE0 , u0, δ, GE) ;

end.

Theorem 3.4 Let D be a tabular diagram of the (s, t)-table, and x be a cell in D,
where x is not in the first column. Suppose that E is the tabular diagram obtained
from D by the insertion of a column with width δ at the west side of the column
including x, where δ is the width of a perimeter cell of the column including x. Let
GD and GE be the rectangular dissection graphs for D and E, respectively. Then
GE is obtained from GD in O(s + t) time.

Proof. The theorem is verified from Algorithm InsertColumn.

Q.E.D.

The following algorithm executes horizontal splitting of an inner cell in a tabular
diagram.

ALGORITHM HSplitCell(GD, vx, GE)

INPUT
GD = (VD, ED, L, λD, A, αD) : a rectangular dissection graph for a tabular diagram
D,
vx : a node in GD corresponding to an inner cell x.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · Tomoe Motohashi et al.

vxx

a

b

c

d

e f

vd

vb

va

vc

vfve

Fig. 15. Nodes with respect to vx

OUTPUT
GE = (VE , EE , L, λE , A, αE) : a rectangular dissection graph for a tabular diagram
E, where E is obtained from D by splitting cell x horizontal into x and y.

METHOD
begin

Initially let GE ← GD ;
let va, vb be lower nodes linked to vx by a vertical edge ;
let vc be the westmost node linked to vx by north wall edges ;
let vd be the westmost node linked to vx by south wall edges ;
let ve be the uppermost node linked to vx by west wall edges ;
let vf be the uppermost node linked to vx by east wall edges ;
put a vertex vy in VE (See Figure 15) ;
/∗ change of vertical edges concerning to vx and vy ∗/
delete two vertical edges [vx, va] and [vx, vb] from EE ;
add edges [vy, va] and [vy, vb] to EE ;
put λE [vy, va] ← λD[vx, va], and λE [vy, vb] ← λD[vx, vb] ;
add an east wall edge and a west wall edge between vx and vy to EE ;
/∗ change of south wall edges concerning to vx ∗/
put δ ← nw(c) + sw(d)−nw(c)

2 ;
put i ← 1 ;
put vi ← vc ;
while sw(vi) < δ do

i ← i + 1 ;
let vi be a lower node linked to vi−1 by a west wall edge ;

end{while} ;
/∗ the first case ∗/
if sw(vi) > δ, then

let wi−1 be the eastmost node linked to vi−1 by north wall edges ;
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 15

xvi-1

y
vi

e

x
vp

yvi

e

vi-1wi-1

wi

wi-1

wi

vq

Fig. 16. Illustration for the first example

let wi be a lower node linked to wi−1 by a west wall edge ;
let vg be an eastside node linked to vi by a north wall edge ;
let vh be a westside node linked to wi by a north wall edge ;
/∗ new perimeter node vp and vq ∗/
add two nodes, vp and vq to VE (See Figure 16) ;
add an east wall edge and a west wall edge between vi−1 and vp to EE ;
add an east wall edge and a west wall edge between vp and vi to EE ;
put nw(p) ← sw(vi−1) ;
put sw(p) ← δ ;
put nw(vi) ← δ ;
delete vertical two edges between vi−1 and vi from EE ;
delete a north wall edge [vi, vg] from EE ;
add a north wall edge [vp, vg] to EE ;
add an east wall edge and a west wall edge between wi−1 and vq in EE ;
add an east wall edge and a west wall edge between vq and wi in EE ;
delete vertical two edges between wi−1 and wi from EE ;
delete a north wall edge [vh, wi] from EE ;
add a north wall edge [vh, vq] to EE ;
add south wall edges [vp, vx] and [vx, vq] in EE ;
add north wall edges [vi, vy] and [vy, wi] in EE ;

/∗ the second case ∗/
else (sw(vi) is equal to δ)

let vNW be the node in the northwest corner ;
/∗ for south wall edges concerning to vx ∗/
put j ← 1 ;
put wj ← vNW ;
put xj ← vi ;
while ww(wj) < ww(e) do

j ← j + 1 ;
Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · Tomoe Motohashi et al.

vx

y
vi+1

e

vi

vNW

xj-1 xj

vx

y
vi+1

e

vi

vNW

xj-1 xj

wj-1

Fig. 17. Illustration for the second example

let xj be a eastside node linked to xj−1 by a south wall edge ;
let wj be the uppermost node linked to xj by west wall edges ;

end{while} (See Figure 17) ;
add two south wall edges [xj−1, vx] and [vx, xj] in EE ;
delete a south wall edge [xj−1, xj] from EE ;
/∗ for north wall edges concerning to vy ∗/
let vi+1 be a lower node linked to vi by a west wall edge ;
put k ← 1 ;
put wk ← vg ;
put yk ← vi+1 ;
while ww(wk) < ww(e) do

k ← k + 1
let yk be a eastside node linked to yk−1 by a north wall edge ;
let wk be the uppermost node linked to yk by west wall edges ;

end{while} ;
add two north wall edges [yk−1, vy] and [vy, yk] in EE ;
delete a north wall edge [yk−1, yk] from EE

end{if}
end.

Theorem 3.5 Let D be a tabular diagram of (s, t)-table, and x be an inner cell
in D. Let E be a tabular diagram obtained from D by the splitting cell x horizontal
into x and y. Let GD and GE be the rectangular dissection graphs for D and E.
Then GE is obtained from GD in O(st) time.

Proof. The theorem is verified from Algorithm HSplitCell. GE is obtained from
GD by the splitting node horizontal into x and y, involving with changing edges,
and the label of the edges. Since we look at nodes each of which is in the north
west side of vx, and the degree of nodes in rectangular dissection graphs is at most
8, then GE is obtained from GD in O(st) time.
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 17

va
vb

vc

vd

ve

vf

vg

vh
v

va
vb

vc

vd

ve

vf

vg

vh

Fig. 18. Delete Isolated Cell

ww

vw v0 ve

ww

vw v0 ve

Fig. 19. West Wall Traversal

Q.E.D.

The following algorithm executes deletion of a column containing a focused cell
from the tabular diagram.

ALGORITHM DeleteColumn(GD, vx, GE)

INPUT
GD : a rectangular dissection graph for a tabular diagram D = (T, P, g),
vx : a node in GD corresponding to a cell x, where δ is the width of the leftmost
perimeter cells in the column including x.

OUTPUT

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · Tomoe Motohashi et al.

GE : a rectangular dissection graph for E, where E is a tabular diagram obtained
from D by the deletion of a column containing x

METHOD
begin

Initially, put GE ← GD ;
traverse upward through the west wall edges from vx until a perimeter node v0 ;
put σw ← ww(v0) ;
put σe ← ew(v0) ;
let vw be an adjacently west-side node linked to v0 by a north wall edge ;
let ve be an adjacently east-side node linked to v0 by a north wall edge ;
/∗ delete a column ∗/
/∗ delete cells of unit width located southern side of v0 ∗/
mark all vertices linked by west wall edges from v0 ”W” ;
initialize the head to v0 ;
while the heads point inner cells do

move the heads downward through east wall edge ;
if the head a vertex v marked ”W” v then

let a be north-side node adjacently linked by east wall edge from v;
let b be north-side node adjacently linked by west wall edge from v;
let c be west-side node adjacently linked by north wall edge from v;
let d be west-side node adjacently linked by south wall edge from v;
let e be south-side node adjacently linked by east wall edge from v;
let f be south-side node adjacently linked by west wall edge from v;
let g be east-side node adjacently linked by north wall edge from v;
let h be east-side node adjacently linked by south wall edge from v;
delete the edges around v ;
add [a, e] to EE ;
add [b, f] to EE ;
add [c, g] to EE ;
add [d, h] to EE ;
delete v from V ;

end {if}
end {while}
/∗ west wall ∗/
let v1 be an adjacently south-side node linked to v0 by a west wall edge ;
put i ← 1 ;
while a node vi is not the lowermost node do

delete two west wall edges [v0, vi] and [vi, vb′] from EE ,
where vb′ is a north-side node of vi and vb′ is a south-side node of vc ;
add a west wall edge [va′ , vb′] to EE ;
traverse westward through the north wall edges from vi

until a perimeter node vk ;
let σN ← nw(k) ;
put j ← 1 ;
put xj ← ve ;
while nw(x) < σN do

Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 19

j ← j + 1
let xj be a southside node linked to xj−1 by a west wall edge ;

end {while};
delete
add two west wall edges [xj−1, vi] and [vi, xj] in EE ;
end {if} ;
delete [xi−1, sj] from EE ;
let i ← i + 1 ;
let vi be a south-side node adjacently linked to v0 by a west wall edge ;

end {while};
/∗ east wall ∗/
let v′1 be an adjacently south-side node linked to v0 by a east wall edge ;
put i ← 1 ;
while a node v′i is not the lowermost node do

traverse upward through the west wall edges from v′i
until a perimeter node u′i ;

delete two west wall edges [v0, v
′
i] and [v′i, vb] from EE ,

where vb is a south-side node of v′i ;
add an east wall edge [v0] to EE ;
traverse westward through the north wall edges from v′i

until a perimeter node v′k ;
let σ′N ← nw(k′) ;
put j ← 1 ;
put x′j ← vW ;
while nw(x′j) < σ′N do

j ← j + 1
let x′j be a southside node linked to xj−1 by a east wall edge ;

end {while};
delete [xi−1, xj] from EE ;
add two east wall edges [x′j−1, v

′
i] and [v′i, x

′
j] in EE ;

let i ← i + 1 ;
let v′ a south side node adjacently linked to v0 by an east wall edge ;

end {while};
delete the node v′j from VE ;
delete the node v0 from VE

end.

Theorem 3.6 Let D be a tabular diagram, and c be a cell in D. Suppose that
E is the tabular diagram obtained from D by the deletion of a column including c,
where δ is the width of a perimeter cell of the column including c. Let GD and GE

be the rectangular dissection graphs for D and E, respectively. Then GE is obtained
from GD in O(st) time, where s and t are the number of rows and columns in D,
respectively.

Proof. The theorem is verified from Algorithm DeleteColmn.

Q.E.D.
Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · Tomoe Motohashi et al.

Consider a tabular diagram D of the (s, t)-table. We note here that the rela-
tion between the number n of the cells in D and the time complexity of certain
algorithms.

The following proposition is verified from Algorithms.

Proposition 3.1 Let D be a tabular diagram of the (s, t)-table, that is, with s
rows and t columns. ChangeColumnWidth and InsertColumn run in O(s+t)
time.

We obtain the following proposition.

Proposition 3.2 Let D be a tabular diagram of the (s, t)-table with n cells.
ChangeColumnWidth and InsertColumn run between in O(

√
n) time and

O(n) time.

Proof. The numbers s, t, and n satisfies the following formula.
√

n ≤
√

st ≤ s + t

2
≤ n

The second equation is obtained from the formula an arithmetic mean and a ge-
ometric mean. Since the cell number n is less than st, the first inequation holds.
Since the number of the perimeter cells are greater than s + t, the third inequation
holds. The time complexity of the algorithms are O(s + t) by Proposition 3.1. We
implies that the algorithms run between in O(

√
n) time and O(n) time.

Q.E.D.

For practical computing, the computation time with respect to the number of
inner cells may be more important than the computation time with respect to
the number of whole cells in the input graph. So, we investigate as following the
computation time with respect to the number of inner cells in the input graph.

Definition 3.1 A tabular diagram D is reduced if and only if there is no directly
linked perimeter nodes in its corresponding rectangular dissection graph, that is,
there is no diffuse grid.

The following algorithm reduces the tables.

ALGORITHM ReduceTable(GD, GE)
INPUT
GD : a rectangular dissection graph for a tabular diagram D = (T, P, g), with s+2
rows and t + 2 columns (s, t > 1), and with n′ inner cells.

OUTPUT
GE : a rectangular dissection graph for E, where E is a tabular diagram obtained
from D without a diffuse grid
Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 21

METHOD
begin

Initially, put GE′ ← GD ;
Let v0 be the north west corner node of D;
Let v ← v0;
while v is inner node do

move eastward by one east wall edge;
if the east wall edge of v is directly linked to the southern perimeter node
then delete the east wall edge of v from E;

delete the west wall edge of the node v′

adjacently located at the east side of v ;
let ew(v) ← ew(v′);
let ew(u) ← ew(u′), where u is the node directly linked by east wall edge

from v and u′ is the node directly linked by west wall edge from v′;
delete v′ and u′ from E;

end { if }:
end { while };
move to v0 ;
while v is inner node do

move downward by one south wall edge ;
if the south wall edge of v is directly linked to the eastern perimeter node
then delete the south wall edge of v from E;

delete the north wall edge of the node v′

adjacently located at the south side of v ;
let sw(v) ← sw(v′);
let sw(u) ← sw(u′), where u is the node directly linked by south wall edge

from v and u′ is the node directly linked by north wall edge from v′;
delete v′ and u′ from E;

end { if }:
end { while };

end.

Proposition 3.3 Let D be a reduced tabular diagram with s + 2 rows and t + 2
columns (s, t > 1). Let n′ be the number of inner cells in T . Then, n′ ≥ max{s, t}.

Proof. Suppose that t ≥ s. Let x be the sum of the numbers of vertical edges
of north side perimeter nodes except the north east corner and the north west
corner. We have x = 2 × t. Let y be the sum of the numbers of northern vertical
edges of inner nodes. We have y = 2 × n′. Since n′ < t, then there exists a
northern perimeter node, which is not the north east and the north west corner,
the southern edge of which directly linked to the southern perimeter nodes. Thus
T is not reduced, a contradiction. Thus the Proposition is verified.

Q.E.D.

Proposition 3.4 If E is a tabular diagram obtained by application of UnifyCell
or HSplitCell on a reduced tabular diagram D, then E is reduced.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · Tomoe Motohashi et al.

Proposition 3.5 Let D be a reduced tabular diagram with s rows and t columns.
ReduceGraph and InsertColumn run in O(s + t) time.

Proposition 3.6 Let D be a reduced square tabular diagram with n inner cells.
UnifyCell, HSplitCell, InsertColumn and DeleteColumn run between in
O(n) time and O(

√
n) time.

Next, we examine the rectangular dissection graphs extended from Definition 2.3,
that is, the vertices of those graphs have location attributes. Similarly to the above
algorithms, we can construct the following algorithms, i. e., (1) UnifyCells2 for
the unifying of cells, (2) SplitCell2 for the splitting of a cell, (3) InsertColumn2
for the insertion of a column and (4) DeleteColumn2 for the deletion of a column.
Suppose that T is a rectangular dissection graph and the vertices of T have the
location attributes and s and t are the number of rows and columns in D. Then
we have,

Proposition 3.7 UnifyCells2 runs in O(1) and SplitCell runs in O(s).
InsertColumn2 runs in O(st) and DeleteColumn2 runs in O(st), since the
changing of the width of a cell requires O(st) time.

4. CONCLUSION

The column insertion algorithm runs on O(
√

n) time for n =
√

n×√n cell square
diagrams, while known methods require O(n) time. The following table illustrates
the features of representation methods for n cell square tables with respect to the
column insertion.

Model Node de-
grees

Cell to node
relation

Cell visits Complexity

Quadtrees at most 5 one ‘block’
to one node

at most n O(n)

Rectangular dual
graphs

at most 4n one cell to
one node

at most n O(n)

Rectangular dis-
section graphs

at most 8 one cell to
one node

at most 2
√

n O(
√

n)

We introduced attribute graphs and algorithms for table editing. The necessary
and sufficient condition, where an attribute graph represents a tabular diagram, has
been determined by a graph grammar [Kirishima, Arita, Motohashi, Tsuchida and
Yaku] . Future research focuses on designing a processing system for table editing
based on other reasearch [Kirishima, Motohashi, Tsuchida and Yaku 2002].

Journal of the ACM, Vol. V, No. N, Month 20YY.

An Octet Degree Graph Representation for the Rectangular Dissections · 23

APPENDIX

the result by OpenOffice

1 2

3 4

65 7

insert a column to the left side of the cell 2

our result

1 2

3 4

65 7

1 2

3 4

65 7

the result by word

1 2

3 4

65 7

insert a column to the right side of the cell 3

our result

1 2

3 4

65 7

1 2

3 4

65 7

Acknowledgement

The authors thank to Prof. Kazuhito Tominaga of Tokyo University of Technology
for valuable discussion with him.

REFERENCES

K. Kozminski, E. Kinnen, Rectangular Duals of Planar Graphs, Networks 15 (1985) 145-157.

Franz J. Brandenburg, Designing Graph Drawings by Layout Graph Grammers, Proc. Graph
Drawing ’94, LNCS 894 (1994) 416-427.

M. de Berg, M.van Kreveld, M. Overmats and O. Schwarzkoph , Computational Geometry
- Algorithms and Applications, Springer (1997)

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · Tomoe Motohashi et al.

Sukhamay Kundu, The Equivalence of the Subregion Representation and the Wall Representation
for a Certain Class of Rectangular Dissections, Communications of the ACM 31 (1998), 752-
763.

T. Arita, K. Tsuchida, T. Yaku et al. , Syntactic proccessing of diagrams by graph grammers,
Proc. IFIP World Computer Congress ICS 2000 (2000) 145-151.

A. Amano, N. Asada, T. Motoyama, T. Sumiyoshi and K. Suzuki, Table Form Document Sys-
thesis by Grammar-Based Structure Analysis, 6-th Internal Conference on Document Analysis
and Recognition (ICDAR) (2001) 533-537

T. Motohashi, K. Tsuchida and T. Yaku, Attribute Graphs and Their Algorithms for Table
Interface, TECHNICAL REPORT OF IEICE SS2002-1 (2002).

T. Motohashi, K. Tsuchida and T. Yaku, Proc. Attribute Graphs for Tables and Their Al-
gorithms, Proc. Foundation of Software Engineering 2002 (K. Inoue Ed.), Kindaikagakusha,
Tokyo, (2002) 183-186.

T. Kirishima, T. Motohashi, K. Tsuchida and T. Yaku, Attribute Graph for Table and
Their Applications, Proc. IASTED International Conference on Software Engineering and
Applications SEA 2002 (2002), 317 - 322.

T. Kirishima, T. Arita, T. Motohashi, K. Tsuchida and T. Yaku, Syntax for Tables, Proc.
IASTED International Conference on Applied Informatics AI 2003 (2003), 1185 - 1190.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

